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Multibunch solutions of the differential-difference equation for traffic flow

Ken Nakanishi
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

~Received 11 October 1999; revised manuscript received 5 June 2000!

The Newell-Whitham type of car-following model, with a hyperbolic tangent as the optimal velocity func-
tion, has a finite number of exact steady traveling wave solutions that can be expressed in terms of elliptic theta
functions. Each such solution describes a density wave with a definite number of car bunches on a circuit. In
our numerical simulations, we observe a transition process from uniform flow to congested flow described by
a one-bunch analytic solution, which appears to be an attractor of the system. In this process, the system
exhibits a series of transitions through which it comes to assume configurations closely approximating multi-
bunch solutions with successively fewer bunches.

PACS number~s!: 02.30.Ks, 45.70.Vn, 47.54.1r, 05.45.Yv
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I. INTRODUCTION

Traffic flow on no-passing freeways has been extensiv
studied using car-following models. Some of these mod
can describe the spontaneous generation of density wa
i.e., traffic congestion, in the collective motion of cars. T
optimal velocity~OV! model @1,2# reveals many features o
congested flow. The equation of motion for this model is

ẍn~ t !5a@V„Dxn~ t !…2 ẋn~ t !#. ~1!

Here, xn and Dxn denote the position and the ‘‘headway
(xn212xn) of the nth car, respectively. Each driver of a c
attempts to adjust its velocity to the optimal velocityV(Dx),
as determined by its headway. The constanta parametrizes
the sensitivity of the adjustment, which must be less th
some critical value for congestion to result. It has been fou
that in a certain range of values of the mean headway,
gradually form bunches, and the positions of these bunc
move backward with a constant velocity.

Most studies have been made using numerical simulat
with cyclic boundary conditions. In these studies it is o
served that high density regions, the bunches, appear in
ternation with low density regions, forming a density wa
of congested flow. Within a given region, all cars move w
almost constant headway and velocity, while in the interfa
between regions the density changes rapidly, exhibitin
characteristic kink shape. The shape of the kink at an in
face seems to be determined only by the sensitivitya and the
OV functionV(Dx), irrespective of the initial conditions an
the mean headway.

There is very little known about analytical solutions
this model. In the vicinity of the critical value ofa, the
interface can be approximately described by the kink so
tion of the modified Korteweg–de Vries equation@3#. For
some particular choices of the OV function, exact solutio
that describe the interface have been obtained@4,5#. How-
ever, in numerical simulations, the evolution process of
congestion is quite complicated. For example, a numbe
bunches with various lengths may arise in the circuit, a
these bunches often fuse. With the present understandin
is not possible to predict the number or lengths of
PRE 621063-651X/2000/62~3!/3349~7!/$15.00
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bunches that will appear, nor is it possible to describe
processes through which they fuse.

In contrast to Eq.~1!, the traditional car-following mode
@6#, which consists of the first-order differential differenc
equation

ẋn~ t1t!5V„Dxn~ t !…, ~2!

has been studied in the field of traffic engineering for seve
decades. The reaction timet here is a time lag which repre
sents the time it takes a car to respond to a change in mo
The models~1! and ~2! are quite similar in their qualitative
behavior, especially with regard to the generation of den
waves. Equation~2! can actually be reduced to Eq.~1! by
truncating the Taylor expansion of its left-hand side asẋn(t
1t). ẋn(t)1t ẍn(t). Numerical simulations show that Eq
~2!, with V(Dx) given by a hyperbolic tangent, possess
congested flow solutions quite similar to those for the cor
sponding OV model@7#.

Early in the 1990s, Whitham@8# found that the model~2!
with an exponential OV function has a pulselike, exa
steady traveling wave solution that can be written in terms
elliptic functions. Although with his choice of the OV func
tion there are no car bunching solutions, he pointed ou
condition on the relation between the time lagt and the
propagation velocity necessary for the existence of such
lutions @see Eq.~5! below#. We call this the Whitham con-
dition. Recently@9#, it was demonstrated that the model~2!
with the hyperbolic tangent OV function

V~Dx!5j1h tanhS Dx2r

2s D ~3!

has a class of car bunching solutions that can be written
terms of elliptic theta functions. The existence of such so
tions requires the Whitham condition to be satisfied. T
authors of Ref.@10# report that the Whitham condition i
satisfied in numerical simulations for a much more gene
class of OV functions.

In this paper, we investigate the structure of the class
exact traveling wave solutions of Eq.~2!. With cyclic bound-
ary conditions, each solution represents a periodic den
wave with definite length and number of bunches. Genera
3349 ©2000 The American Physical Society
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3350 PRE 62KEN NAKANISHI
there exist several solutions with different numbers
bunches. We refer to these as the ‘‘multibunch solution
We also report the results of numerical simulations in wh
we observed the generation process of density waves.
found that this process occurs through relaxation to one
the analytic solutions.

In the next section, we investigate the parameter spac
the exact solutions and find a finite series of multibun
solutions. In Sec. III, the parameter values that allow mu
bunch solutions are determined. These values were use
the numerical simulations reported in Sec. IV. The final s
tion is devoted to a summary and discussion. Some m
ematical formulas for the elliptic functions and the exact
lutions are summarized in the Appendixes.

II. MULTIBUNCH SOLUTIONS IN A CIRCUIT

We begin by summarizing our previous results@9# for the
exact solution with width parameterd,

xn~ t !5Ct2nh1A ln
q0~nt22bn2b1d,q!

q0~nt22bn2b2d,q!
, ~4!

whereq0(v,q) is the elliptic theta function, andq, A, b, n, d,
C, and h are free parameters that characterize the solut
Here,q is the modulus parameter of the theta function, anh
is the mean headway of theN cars in the circuit, whose
length isL[Nh. The traffic flow expressed by Eq.~4! dis-
plays the alternate appearance ofhigh density regionsand
low density regions. In this way, the traffic in the circuit is
divided into several bunches, which move backward. T
cyclic boundary conditionxn1N(t)5xn(t)2Nh, together
with the periodicity of the theta function,q0(v11,q)
5q0(v,q), implies that 2bN must be an integer, which co
incides with the number of bunchesnb . We call b the
‘‘bunch parameter.’’ The wavelength 1/~2b! is approxi-
mately equal to the number of cars within a pair of conse
tive high and low density regions. The width parameterd,
which ranges in 0,2d,1, determines the proportion of low
density region in a wavelength: 2d/~2b! and (1
22d)/(2b) are roughly equal to the number of cars in t
low and high density regions, respectively.

The expression~4!, which satisfies the equation of motio
~2! with the OV function~3!, gives us a finite set of exac
solutions. As discussed in Ref.@9#, the traffic model with a
given time lag constantt possesses an exact solution of t
form ~4! only if the Whitham condition

nt5b ~5!

is met. Under this condition, there are four relations betw
the free parameters and the coefficients of the equatio
motion j, h, r, ands, as described in Appendix B@see Eqs.
~B14!–~B17!#. First, the mean headwayh is determined by
the system sizeL andN. Then,n is fixed in terms oft, andb
by the Whitham condition. We also find thatA is identical
with s, as given in Eq.~B17!. Finally, the remaining four
parametersq, b, d, andC are subject to the three relation
~B14!–~B16!. It would appear that a parameter remains u
determined and that the system has a one-parameter fa
of exact solutions. However, noting thatb is discretized, we
see that the bunch numbernb must be an integer. Moreove
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the number of bunches cannot exceed the total numbe
carsN. ~We see below that a much stronger restriction in f
exists for the maximum number of bunches.! Consequently,
the form ~4! represents afinite number of exact solutions
which describe thenb-bunch configurations of traffic conges
tion. These are the multibunch solutions mentioned abov

To examine the multibunch solutions, let us analyze
three relations~B14!–~B16! in detail:

j5C1
sb

2t

d

db
ln

q1~2d1b!

q1~2d2b!
, ~6!

h5
sb

2t

d

db
ln

q1
2~b!

q1~2d1b!q1~2d2b!
, ~7!

r5h2s ln
q1~2d2b!

q1~2d1b!
. ~8!

When the time lagt and the coefficientsj, h, r, ands are
given, we can solve these three equations. Equation~7! gives
a relation amongq, b, andd. By solving this equation, we
can expressd as a function ofq andb. In this way, we obtain
a solvability condition ford, which gives us an allowed re
gion for the parameterq for each possible value ofb. The
parametersC andh can also be computed as functions ofq
andb by substituting the expression ford(q,b) into Eqs.~6!
and ~8!. For each possibleb, the modulus parameterq is
determined so as to satisfy the equationh(q,b)5L/N.

First, we rewrite Eq.~7! in terms of the Jacobi elliptic
function. The product of the theta functions in Eq.~7! can be
decomposed by using the addition formula given in Appe
dix A. Replacingq1(v)/q0(v) by the Jacobi elliptic func-
tion Aksn 2Kv in Eq. ~B19!, we rewrite it as

t

tc
52

b

2

d

db
lnS 1

sn2 2Kb
2

1

sn2 4Kd D . ~9!

Heres/h is denoted bytc for the following reason. A linear
analysis@8,11# gives the instability condition

2tV8~h![t
h

s
sech2S h2r

2s D.
p/N

sinp/N
~10!

for uniform flow described byxn
(0)(t)5V(h)t2nh. @Note

that the right-hand side of Eq.~10! is almost equal to 1,
provided thatN is not too small.# Then the time lagt must
satisfy the condition

t.tc[
s

h
, ~11!

in order for there to exist uniform flow that decays in such
way as to produce congested flow. The valuetc thus repre-
sents the critical time lag.

We now discuss the solvability condition for Eq.~9! and
the allowed region forq and b. By differentiating with re-
spect tob, we can solve Eq.~9! for sn 4Kd. We obtain

sn2 4Kd5
sn2 2Kb

12~tc /t!~2Kb cn 2Kb dn 2Kb/sn 2Kb!
.

~12!
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Since sn2 4Kd<1, the right-hand side of the above equati
cannot exceed 1. Thus, the solvability condition that guar
tees the existence ofd is given by

tc

t
<

sn 2Kb cn 2Kb

2Kb dn 2Kb
. ~13!

This inequality gives us a restriction on the number
bunches for a givent. Since both the complete elliptic inte
gral of the first kind,K, and the modulus of the Jacobi ellip
tic functions,k, are functions ofq @as given in Eq.~A3!#, the
right-hand side of Eq.~13! depends only onb andq. In Fig.
1, we show the allowed region determined by Eq.~13! in the
(b,q) plane for the casetc /t50.858 69. It can easily be
checked that the allowed region actually disappears fot
,tc . The boundary curve in Fig. 1 crosses theb axis atb0 ,
the maximum value ofb, which satisfies1

tc

t
5

sin 2pb0

2pb0
. ~14!

Thus,b0 is determined by only the value oftc /t. The exis-
tence of a nontrivial upper bound ofb implies that the num-
ber of bunches is restricted much more severely than by
obvious conditionnb,N. Explicitly, the maximum value of
the number of bunchesnb

max, obtained from Eq.~14!, is
given by

nb
max5@2Nb0#, ~15!

1The right-hand side of Eq.~14! is given by theq→0 limit of the
right-hand side of Eq.~13!.

FIG. 1. The allowed region as determined by the solvabi
condition with tc /t50.858 69. The maximum value of the bunc
parameterb0 is 0.149 835. The vertical dashed lines indicate
ranges ofq for some possible values ofb with N520. These cor-
respond tonb51, 2, 3, 4, and 5.
-

f

e

where @x# is the maximal integer that does not exceedx.
Consequently, when the time lagt and the total car numbe
N are given, the system hasnb

max multibunch solutions with
the bunch parameters

b5
1

2N
,

2

2N
,...,

nb

2N
,...,

nb
max

2N
. ~16!

When we specify one of the possible bunch numbers
equivalently one of the allowed values ofb, the solvability
condition ~13! gives us an allowed range of the modul
parameterq:

0<q<qmax~b!. ~17!

Here qmax(b) is the value corresponding to equality in th
solvability condition for a given value ofb. The vertical
dashed lines in Fig. 1 indicate the ranges ofq for several
values ofb with N520. In the case depicted there,nb

max

55.

III. CONSTRUCTION OF A MULTIBUNCH SOLUTION

In this section, we determine the width parameterd and
the modulus parameterq for a fixednb ~or b! to construct the
nb-bunch solution. In the allowed range~17!, Eq. ~12! has
two branches ofd as functions ofq. One, which we denote
d2 , remains in the range 0,2d2, 1

2 and is given by

2d2~q!5
1

2K
sn21

3
sn 2Kb

A12~tc /t!~2Kb cn 2Kb dn 2Kb/sn 2Kb!
, ~18!

where the branch of the inverse Jacobi function sn21 is se-
lected as 0,sn21,K. The other branch, which we deno
d1 , remains in the range12 ,2d1,1 ~corresponding toK
,sn21,2K! and is given by 2d1(q)[122d2(q). These
two branches 2d2(q) and 2d1(q) are connected atq
5qmax(b), where 2d5 1

2 , as depicted in Fig. 2.
Corresponding to these branches, the mean headwayh(q)

also has two branchesh2,r and h1.r. By putting
2d6(q) into Eq. ~8!, we obtain an expression for eac
branch:

FIG. 2. The width parameter 2d6(q) for tc /t50.858 69 with
N520. Each curve corresponds to a possible bunch numbenb

appearing in Fig. 1.
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3352 PRE 62KEN NAKANISHI
h6~q!5r1s ln
q1„2d6~q!2b,q…

q1„2d6~q!1b,q…
. ~19!

Since h2(q)1h1(q)52r, these functions are symmetr
with respect to reflection abouth5r. The combined entire
function h(q) is displayed in Fig. 3. We can now determin
the modulus parameterq, within a certain range of values o
the mean headwayL/N, by solvingh(q)5L/N. Onceq is
obtained, the parameterC is calculated directly from Eq.~6!.
In this way, the exact multibunch solution~4! can be con-
structed. For the first branch,h2,r, the width parameter is
in the range 0,2d, 1

2 , and the low density region in th
traffic flow contains more cars than the high density regi
Contrastingly, for the second branchh1.r, the width pa-
rameter exceeds12, and the congested region has more ca
A ‘‘symmetric density wave,’’ corresponding to 2d5 1

2 , al-
ways exists when the mean headwayh is equal tor, the

inflection point of the OV function, sinceq1( 1
2 1b)5q1( 1

2

2b), regardless of the values ofb andq.
When the equationh(q)5L/N allows multiple values of

q, although an analytic solution can be constructed for e
q, not all of these solutions are stable. In Fig. 3, the das
lines indicate the linearly unstable region@determined by Eq.
~10!# of the ~common! headway of the uniform flow
xn

(0)(t):

uh2ru,2s arccoshA t

tc

sinp/N

p/N
. ~20!

Outside this range, we find two different values ofq for nb
51 or 2. In this case, the solution corresponding to unifo
flow is linearly stable. However, we cannot say for certa
whether multibunch solutions are stable. We will discuss t
point in another work@12#. On the other hand, it is likely tha
unstable uniform flow will develop into one of the analyt
solutions within the range~20!. However, the process in
which a multibunch solution is generated from a given init
configuration is very complicated. For this reason, it is di
cult to predict which of the possible analytic solutions w
be selected.

FIG. 3. The mean headwayh6(q) for tc /t50.858 69,r52,
and s51/2 with N520. Each curve corresponds to a possib
bunch numbernb appearing in Figs. 1 and 2. The horizontal dash
lines indicate the critical values of the headway as determined
the linear instability, which coincide with theq→0 limits of h(q)
for nb51.
.

.

h
d

is

l

IV. NUMERICAL SIMULATIONS

To investigate the process in which a multibunch solut
is generated from uniform flow, we performed numeric
simulations for the differential-difference equation~2!. We
used the OV function

V~Dx!5tanh~Dx22!1tanh 2. ~21!

That is, the coefficients were chosen asj5tanh 2,h51, r
52, ands50.5 (tc50.5). The time lagt50.588 28 gives
tc /t50.858 69,1. We prepared 20 cars and arranged th
so that they formed a uniform flow with constant headw
h51.885 71 and initial velocityV(h)50.850 233 in a circuit
whose circumference wasL537.7142. The uniform flow
was maintained for a durationt to prepare the initial function
of the differential-difference equation. The solvability cond
tion ~13! tells us that the maximum number of bunches
this case is five. The values of the modulus parameterq for
the possible bunch numbersnb51, 2, 3, 4, and 5 are
0.707 921 403 287 55, 0.501 133 76, 0.353 616 7, 0.241 80
and 0.140 292, respectively. Since uniform flow is linea
unstable, a density wave begins to develop. In this case,
one-bunch mode was ultimately generated after a suffic
relaxation timet.63104. The result, which is represente
in Fig. 4 by dots, agrees quite well with the analytic on
bunch solution withq50.707 921 403 287 55, as represent
by the thin line in the figure.

We observed many interesting phenomena in the proc
in which the one-bunch solution eventually appears. Fi
until t.300, the initial uniform flow developed into a three
bunch configuration which closely resembles the exact th
bunch solution. Although this configuration maintained
shape for some time, it gradually became distorted, with
of the bunches moving closer to a neighboring bunch. At
.4680, the fusion of these bunches occurred, and sys
transformed into a two-bunch configuration. The two-bun
configuration existed about ten times longer than the thr
bunch one. However, eventually, one of the bunches be
to shrink. This bunch was finally absorbed by the other at
.51 560, as shown in Fig. 5, and the formation of the on
bunch solution was completed. The simulation was con
ued untilt523105, with the one-bunch solution continuin

d
y

FIG. 4. The result of a numerical simulation withN520, tc /t
50.858 69,V(Dx)5tanh(Dx22)1tanh 2 after a sufficient relax
ation timet.63104. The curve plotted by the dots represents t
results of the numerical simulation, while the solid line represe
the analytic one-bunch solution withq50.707 921 403 287 55.
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to survive, unchanged in form. These results suggest tha
one-bunch solution is an attractor of the system@13#.

V. SUMMARY AND DISCUSSION

We found a finite set of exact multibunch solutions for
car-following model consisting of a differential-differenc
equation with a cyclic boundary condition characterized b
driver’s reaction time. We found that when the circuit leng
and the total number of cars are given, we can calculate
possible number of car bunches in the circuit and the pro
of the density wave that describes the car bunching.
numerical simulations show that linearly unstable unifo
flow gradually develops into a one-bunch solution, whi
seems to be an attractor of the system. In the relaxation
cess from uniform flow to the one-bunch solution, the syst
remains for extended times in configurations that closely
proximate higher multibunch solutions. We found that t
durations of these quasistable configurations increase e
nentially as the number of bunches decreases~see Fig. 1 in
Ref. @13#!.

The series of transitions from one multibunch configu
tion to the next suggests that each multibunch solution c
responds to a heteroclinic point of the system. However,
flow out of the one-bunch solution was observed, which s
gests that it is an attractor. It is also possible that each of
multibunch solutions is a kind of Milnor attractor@14#,
which is unstable with respect to any small perturbation,
globally attracts orbits. To fully understand the situation
must investigate the stability and attracting domain of
multibunch solutions more precisely.

The formation of density waves from uniform flow in th
OV model is very similar to that in the present model. C
bunching and the fusion of bunches have also been obse
in the OV model. It is reasonable to believe that the ex
tence of multibunch solutions and the qualitative features
the cascade of transitions are common to both models
though at this time we cannot be sure, as analytic soluti
for the OV model have not yet been obtained.
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APPENDIX A: DEFINITIONS AND FORMULAS
OF ELLIPTIC FUNCTIONS

The definitions of elliptic functions and some mathema
cal formulas used in this paper are listed in this Appendi

The elliptic theta functions are defined as the infin
products

q0~v,q!5q0)
n51

`

~122q2n21 cos 2pv1q4n22!,

~A1!

q1~v,q!52p1/4q0 sinpv )
n51

`

~122q2n cos 2pv1q4n!,

where q05Pn51
` (12q2n). The addition formulas for the

theta functions are

q0~v1w!q0~v2w!q0
2~0!5q0

2~v !q0
2~w!2q1

2~v !v1
2~w!,

~A2!
q1~v1w!q1~v2w!q0

2~0!5q1
2~v !q0

2~w!2q0
2~v !q1

2~w!.

The Jacobi elliptic functions, the modulusk, and the comple-
mentary modulusk8 can be expressed in terms of the the
functions as follows:

k5
q2

2~0,q!

q3
2~0,q!

, k85
q0

2~0,q!

q3
2~0,q!

, K5
p

2
q3

2~0,q!,

sn 2Kv5
1

Ak

q1~v !

q0~v !
, cn 2Kv5A12sn22Kv, ~A3!

dn 2Kv5A12k2sn2 2Kv,

whereK is the complete elliptic integral of the first kind.

APPENDIX B: THETA FUNCTION FORMALISM

Let us solve the equation of motion

ẋn~ t1t!5j1h tanhS Dxn~ t !2r

2s D . ~B1!

with the assumed form

xn~ t !5Ct2nh1A ln
q0~v2b1d!

q0~v2b2d!
, ~B2!

where

v[nt22bn. ~B3!

By virtue of the Whitham conditionnt5b, the velocity at
t1t can be written as

ẋn~ t1t!5C1An
d

dv
ln

q0~v1d!

q0~v2d!
, ~B4!
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where we have replaced the time differentiationd/dt with
n d/dv. Then, converting thev differentiation intod/dd, we
can apply the addition formula~A2! to the expression

d

dv
ln

q0~v1d!

q0~v2d!
5

d

dd
ln@q0~v1d!q0~v2d!#

5
d

dd
ln@q0

2~v !q0
2~d!2q1

2~v !q1
2~d!#.

~B5!

This allows us to write the velocity in a rational expressi
of q0

2(v) andq1
2(v):

ẋn~ t1t!5C1An
q0

2~v !@q0
2~d!#82q1

2~v !@q1
2~d!#8

q0
2~v !q0

2~d!2q1
2~v !q1

2~d!
.

~B6!

We find that the headway

Dxn~ t !5h1A ln
q0~v1b1d!q0~v2b2d!

q0~v1b2d!q0~v2b1d!
~B7!

can also be expressed in a rational form withq0
2(v) and

q1
2(v):

e2Xn5
q0

2~v !q0
2~d1b!2q1

2~v !q1
2~d1b!

q0
2~v !q0

2~d2b!2q1
2~v !q1

2~d2b!
. ~B8!

Here

Xn5
Dxn~ t !2h

2A
. ~B9!

By eliminatingq0
2(v) andq1

2(v) from Eqs.~B6! and~B8!, it
can be shown that the velocityẋn(t1t) is equal to a first
order rational expression ofe2Xn, which can be rewritten as
hyperbolic tangent function of the headwayDxn(t). Per-
forming this elimination, we obtain a differential-differenc
equation that the form~B2! satisfies:

ẋn~ t1t!5C1An
N11N2e2Xn

D11D2e2Xn
, ~B10!

where

D65q0
2~0!q1~b!q1~2d6b!,

N656$q1
2~d6b!@q0

2~d!#82q0
2~d6b!@q1

2~d!#8%.
~B11!
ug

hi-

v

We can transformN6 here into expressions involving differ
entiation with respect tob rather thand:

N65S 6
d

dd
2

d

db D @q1
2~d6b!q0

2~d!2q0
2~d6b!q1

2~d!#

56q0
2~0!q1~b!q1~2d6b!

d

db
ln

q1~2d6b!

q1~b!
.

~B12!

As mentioned above, Eq.~B10! can be written by using the
hyperbolic tangent function as

ẋn~ t1t!5C1
An

2 S N2

D2
1

N1

D1
D1

An

2 S N2

D2
2

N1

D1
D

3tanhS Xn1
1

2
ln

D2

D1
D . ~B13!

Thus, we find the equations to which the parameters
subject by comparing the above equation with the equa
of motion ~B1!. We obtain

j5C1
An

2

d

db
ln

q1~2d1b!

q1~2d2b!
, ~B14!

h5
An

2

d

db
ln

q1
2~b!

q1~2d1b!q1~2d2b!
, ~B15!

r5h2A ln
q1~2d2b!

q1~2d1b!
, ~B16!

s5A. ~B17!

In the first two equations, we can decompose the variabled
andb in the theta functions using the addition formulas. W
obtain the following:

j5C1
An

2

d

dd
ln q0~2d!1

An

4

d

dd
lnS q1

2~2d!

q0
2~2d!

2
q1

2~b!

q0
2~b!

D ,

~B18!

h52
An

2

d

db
lnS q0

2~b!

q1
2~b!

2
q0

2~2d!

q1
2~2d!

D . ~B19!

For the first of these,d/db is converted intod/dd, to apply
the addition formulas, before the decomposition. It can
shown that the relations~B14!–~B17! are equivalent to those
that we found previously@9#, although they are quite differ
ent in appearance.
-
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