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Multibunch solutions of the differential-difference equation for traffic flow
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The Newell-Whitham type of car-following model, with a hyperbolic tangent as the optimal velocity func-
tion, has a finite number of exact steady traveling wave solutions that can be expressed in terms of elliptic theta
functions. Each such solution describes a density wave with a definite number of car bunches on a circuit. In
our numerical simulations, we observe a transition process from uniform flow to congested flow described by
a one-bunch analytic solution, which appears to be an attractor of the system. In this process, the system
exhibits a series of transitions through which it comes to assume configurations closely approximating multi-
bunch solutions with successively fewer bunches.

PACS numbes): 02.30.Ks, 45.70.Vn, 47.54r, 05.45.Yv

[. INTRODUCTION bunches that will appear, nor is it possible to describe the
processes through which they fuse.

Traffic flow on no-passing freeways has been extensively In contrast to Eq(1), the traditional car-following model
studied using car-following models. Some of these model$6], which consists of the first-order differential difference
can describe the spontaneous generation of density wavesquation
i.e., traffic congestion, in the collective motion of cars. The
optimal velocity(OV) model[1,2] reveals many features of Xn(t+ 1) =V(AX,(1)), 2

congested flow. The equation of motion for this model is
has been studied in the field of traffic engineering for several

. . decades. The reaction timehere is a time lag which repre-
Kn(t)=alV(Axn(1)) =Xn(D)]- (1) sents the time it takes a car to respond to a change in motion.
The models(1) and(2) are quite similar in their qualitative
Here, x, and Ax, denote the position and the “headway” Pehavior, especially with regard to the generation of density
(Xn_1—Xy) Of thenth car, respectively. Each driver of a car Waves. Equation2) can actually be reduced to E@L) by
attempts to adjust its velocity to the optimal velocityAx), ~ truncating the Taylor expansion of its left-hand sidexad
as determined by its headway. The constamarametrizes + 7)=Xn(t) + 7%y(t). Numerical simulations show that Eq.
the sensitivity of the adjustment, which must be less thad2), with V(Ax) given by a hyperbolic tangent, possesses
some critical value for congestion to result. It has been foun@ongested flow solutions quite similar to those for the corre-
that in a certain range of values of the mean headway, ca&Ponding OV modef7].
gradually form bunches, and the positions of these bunches Early in the 1990s, Whitharf8] found that the mode(2)
move backward with a constant velocity. with an exponential OV function has a pulselike, exact
Most studies have been made using numerical simulationgteéady traveling wave solution that can be written in terms of
with cyclic boundary conditions. In these studies it is ob-e€lliptic functions. Although with his choice of the OV func-
served that high density regions, the bunches, appear in dion there are no car bunching solutions, he pointed out a
ternation with low density regions, forming a density wavecondition on the relation between the time lagand the
of congested flow. Within a given region, all cars move with Propagation velocity necessary for the existence of such so-
almost constant headway and velocity, while in the interface4itions [see Eq.(5) below]. We call this the Whitham con-
between regions the density changes rapidly, exhibiting &lition. Recently[9], it was demonstrated that the mod2)
characteristic kink shape. The shape of the kink at an interith the hyperbolic tangent OV function
face seems to be determined only by the sensitavigynd the A
OV functionV(AX), irrespective of the initial conditions and _ X—p
the mean headway. V(Ax) =&+ ntan)‘( 20 ) &
There is very little known about analytical solutions of
this model. In the vicinity of the critical value o, the  has a class of car bunching solutions that can be written in
interface can be approximately described by the kink soluterms of elliptic theta functions. The existence of such solu-
tion of the modified Korteweg—de Vries equatifd]. For  tions requires the Whitham condition to be satisfied. The
some particular choices of the OV function, exact solutionsauthors of Ref[10] report that the Whitham condition is
that describe the interface have been obtaik8l]. How-  satisfied in numerical simulations for a much more general
ever, in numerical simulations, the evolution process of theclass of OV functions.
congestion is quite complicated. For example, a number of In this paper, we investigate the structure of the class of
bunches with various lengths may arise in the circuit, andexact traveling wave solutions of E@). With cyclic bound-
these bunches often fuse. With the present understanding,aty conditions, each solution represents a periodic density
is not possible to predict the number or lengths of thewave with definite length and number of bunches. Generally,
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there exist several solutions with different numbers ofthe number of bunches cannot exceed the total number of

bunches. We refer to these as the “multibunch solutions.”carsN. (We see below that a much stronger restriction in fact

We also report the results of numerical simulations in whichexists for the maximum number of buncheSonsequently,

we observed the generation process of density waves. Whe form (4) represents dinite number of exact solutions,

found that this process occurs through relaxation to one aivhich describe the,-bunch configurations of traffic conges-

the analytic solutions. tion. These are the multibunch solutions mentioned above.
In the next section, we investigate the parameter space of To examine the multibunch solutions, let us analyze the

the exact solutions and find a finite series of multibunchthree relation§B14)—(B16) in detail:

solutions. In Sec. lll, the parameter values that allow multi-

bunch solutions are determined. These values were used in of d 91(26+p)

the numerical simulations reported in Sec. IV. The final sec- §=Ctoo dB " 9.(20-B)" ©)
tion is devoted to a summary and discussion. Some math-
ematical formulas for the elliptic functions and the exact so- oB d 1‘}5(5)
lutions are summarized in the Appendixes. n=5- @In 9126+ B) 91 (26—F) (7)
II. MULTIBUNCH SOLUTIONS IN A CIRCUIT 91(25— B)
. . . p=h—ocln—FF——. (8)
We begin by summarizing our previous res(ii$ for the 91(26+B)

exact solution with width parametey ) .
When the time lagr and the coefficientg, », p, ando are

Bo(vt—28n—B+8,q) given, we can solve these three equations. Equé&fipgives
Xn(1)=Ct—nh+Aln—5 (=2Bn—f-0.0)" (49 a relation amongy, B8, and 8. By solving this equation, we
0 ’ can expres$ as a function ofj and. In this way, we obtain
whered,(v,q) is the elliptic theta function, angl A, B, », 5, & solvability condition fors, which gives us an allowed re-
C, andh are free parameters that characterize the solutiorion for the parameteq for each possible value g8. The
Here,q is the modulus parameter of the theta function, and Parameter<C andh can also be computed as functionscpf
is the mean headway of thil cars in the circuit, whose andp by substituting the expression fé(q, 5) into Egs.(6)
length isL=Nh. The traffic flow expressed by E¢) dis- and (8). For each possiblg, the modulus parametey is
plays the alternate appearancehigh density regiongnd determined so as to satisfy the equatitfo), 3) =L/N.
low density regionsin this way, the traffic in the circuit is First, we rewrite Eq.(7) in terms of the Jacobi elliptic
divided into several bunches, which move backward. Thdunction. The product of the theta functions in E@) can be
cyclic boundary conditionx, n(t)=X,(t) —Nh, together —decomposed by using the addition formula given in Appen-
with the periodicity of the theta functiongo(v+1,q)  dix A. Replacingd;(v)/do(v) by the Jacobi elliptic func-
— 9(v,q), implies that 8N must be an integer, which co- tion VksnXuv in Eq. (B19), we rewrite it as
incides with the number of bunches,. We call 8 the
“bunch parameter.” The wavelength (2B) is approxi- T__ E iln( 1 _ 1
mately equal to the number of cars within a pair of consecu- Te 2dB \st2KB srf 4Ké$
tive high and low density regions. The width parameder ) ) )
which ranges in &25<1, determines the proportion of low Hereo’z is denoted byr, for the following reason. A linear
density region in a wavelength: 8228 and (1 analysis[8,11] gives the instability condition
—26)/(2B) are roughly equal to the number of cars in the he +IN
low and high density regions, respectively. ZTV/(h)ETzseC,q(_P -
The expressior), which satisfies the equation of motion o 2 sin/N
(2) with the QV function(3), gives us a finite set of exact . ) ) /ey
solutions. As discussed in RéB], the traffic model with a 0" uniform flow described byx,”(t)=V(h)t—nh. [Note

given time lag constant possesses an exact solution of thethat the right-hand side of Eq10) is almost equal to 1,
form (4) only if the Whitham condition provided thatN is not too smalll Then the time lagr must

satisfy the condition

: (€)

(10

vr=p (5)

is met. Under this condition, there are four relations between
the free parameters and the coefficients of the equation of
motion & 7, p, ando, as described in Appendix Bee Eqgs. in order for there to exist uniform flow that decays in such a
(B14)—(B17)]. First, the mean headwdyis determined by way as to produce congested flow. The vatdehus repre-
the system sizé andN. Then,v is fixed in terms ofr, and  sents the critical time lag.

by the Whitham condition. We also find thatis identical We now discuss the solvability condition for E@) and
with o, as given in Eq(B17). Finally, the remaining four the allowed region fog and 8. By differentiating with re-
parametersy, 8, 5, andC are subject to the three relations spect to3, we can solve Eq(9) for sn K 5. We obtain
(B14)—(B16). It would appear that a parameter remains un-

determined and that the system has a one-parameter family SIPAK S— s’ 2K B

of exact solutions. However, noting thatis discretized, we 1—(7./7)(2KBcn2KBdn2KB/sn K B)

see that the bunch numbeg must be an integer. Moreover, (12

(o

T> 7= ;, (11
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0.2 FIG. 2. The width parameter&.(q) for 7./7=0.858 69 with
N=20. Each curve corresponds to a possible bunch numper
appearing in Fig. 1.
0 0.05 0.1 0.15 0.2 s where[x] is the maximal integer that does not exceed

Consequently, when the time lagand the total car number

FIG. 1. The allowed region as determined by the SO|VabI|ItyN are g|Ven' the System haﬂw‘x multlbunch Solutlons W|th
condition with 7./7=0.858 69. The maximum value of the bunch the bunch parameters

parameterB, is 0.149 835. The vertical dashed lines indicate the
ranges ofg for some possible values @ with N=20. These cor- 1 2 Ny ng“ax

respond ton,=1, 2, 3, 4, and 5. B:mmmm (16)

Since sR4K §<1, the right-hand side of the above equation When we specify one of the possible bunch numbers, or
cannot exceed 1. Thus, the solvability condition that guaranequivalently one of the allowed values gf the solvability

tees the existence dfis given by condition (13) gives us an allowed range of the modulus
parametenq:

(13) 0<g<Qmad B)- (17)

Here qma{B) is the value corresponding to equality in the
solvability condition for a given value oB. The vertical
dashed lines in Fig. 1 indicate the rangesqofor several
values of 8 with N=20. In the case depicted thenaj™

=5.

7. SnZKpBcn2Kpg
_S—
T 2KBdn2Kg

This inequality gives us a restriction on the number of
bunches for a given. Since both the complete elliptic inte-
gral of the first kind K, and the modulus of the Jacobi ellip-
tic functions k, are functions ofy [as given in Eq(A3)], the
right-hand side of Eq(13) depends only o8 andq. In Fig.

1, we show the allowed region determined by E®) in the

(B.,0) plane for the case/7=0.85869. It can easily be | this section, we determine the width parameseand

checked that the allowed region actually disappears7for the modulus parameterfor a fixedn,, (or 8) to construct the

<7¢. The boundary curve in Fig. 1 crosses axis atBo,  n,-bunch solution. In the allowed rangé7), Eq. (12) has

the maximum value of, which satisfies two branches of as functions ofg. One, which we denote
5_, remains in the range<025_<3 and is given by

[lI. CONSTRUCTION OF A MULTIBUNCH SOLUTION

7. Sin 2w,

e =M 1

T 2mBy (14) 25_(q)= Rsn*1
Thus, B¢ is determined by only the value ef./7. The exis- % sn Kp (18
tence of a nontrivial upper bound gfimplies that the num- JI—(7./7)(2KB cn 2K B dn 2K 8/sn K 3) ' )

ber of bunches is restricted much more severely than by the
obvious conditiom,<<N. Explicitly, the maximum value of where the branch of the inverse Jacobi functionlsis se-
the number of bunches]®, obtained from Eq.(14), is lected as @& sn '<K. The other branch, which we denote
given by 8., remains in the rangg<245, <1 (corresponding td<
<sn 1<2K) and is given by 2. (q)=1—26_(q). These
two branches 8 (gq) and 25,.(gq) are connected at
=Qmax(B), Where 25=3, as depicted in Fig. 2.
Corresponding to these branches, the mean heabgy
also has two brancheb_<p and h, >p. By putting
The right-hand side of Eq14) is given by theq—O0 limitof the ~ 25-(q) into Eq. (8), we obtain an expression for each
right-hand side of Eq(13). branch:

g =[2Npol, (15
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FIG. 3. The mean headway. (q) for ./7=0.85869,p=2, FIG. 4. The result of a numerical simulation with= 20, 7. /7

=0.858 69, V(Ax)=tanh(Ax—2)+tanh 2 after a sufficient relax-
ation timet=6x10*. The curve plotted by the dots represents the
results of the numerical simulation, while the solid line represents
he analytic one-bunch solution witi=0.707 921 403 287 55.

and o=1/2 with N=20. Each curve corresponds to a possible
bunch numben, appearing in Figs. 1 and 2. The horizontal dashed
lines indicate the critical values of the headway as determined b
the linear instability, which coincide with thg—0 limits of h(q)

for n,=1.
IV. NUMERICAL SIMULATIONS

91(26-(q)—B,9) To investigate the process in which a multibunch solution
91(26.(q)+8.,9)° 19 s generated from uniform flow, we performed numerical
simulations for the differential-difference equati¢®). We
used the OV function

h.(@)=p+cln

Since h_(q)+h,(g)=2p, these functions are symmetric
with respect to reflection abolt=p. The combined entire
functionh(q) is displayed in Fig. 3. We can now determine V(Ax) =tanh(Ax—2) +tanh 2. (21)
the modulus parameteg within a certain range of values of
the mean headwal/N, by solvingh(q)=L/N. Onceqis  That is, the coefficients were chosen &stanh2,7=1, p
obtained, the paramet€&ris calculated directly from Ed#6). =2, ando=0.5 (7,=0.5). The time lagr=0.588 28 gives
In this way, the exact multibunch solutid#) can be con- 7 /r=0.85869<1. We prepared 20 cars and arranged them
structed. For the first branch, <p, the width parameter is so that they formed a uniform flow with constant headway
in the range 6:26<3, and the low density region in the h—=1.88571 and initial velocity/(h) =0.850 233 in a circuit
traffic flow contains more cars than the high density regionywhose circumference was=37.7142. The uniform flow
Contrastingly, for the second branth >p, the width pa-  was maintained for a duratiorto prepare the initial function
rameter exceeds, and the congested region has more carsef the differential-difference equation. The solvability condi-
A “symmetric density wave,” corresponding to®2=3, al-  tion (13) tells us that the maximum number of bunches in
ways exists when the mean headways equal top, the  this case is five. The values of the modulus paramgtier
inflection point of the OV function, sincé,(3+ B8)=9:1(3 the possible bunch numbens,=1, 2, 3, 4, and 5 are
— ﬁ), regard|ess of the values ﬂfand q. 0.707 921403 28755, 0.501 13376, 0.353616 7, 0.241 804 4,
When the equatioh(q) =L/N allows multiple values of and 0.140 292, respectively. Since uniform flow is linearly
g, although an analytic solution can be constructed for eachnstable, a density wave begins to develop. In this case, the
g, not all of these solutions are stable. In Fig. 3, the dashe@ne-bunch mode was ultimately generated after a sufficient
lines indicate the linearly unstable regifsretermined by Eq. ~ relaxation timet=6x10*. The result, which is represented

(10)] of the (common headway of the uniform flow in Fig. 4 by dots, agrees quite well with the analytic one-
xO(t): bunch solution withg=0.707 921 403 287 55, as represented

by the thin line in the figure.
. We observed many interesting phenomena in the process
7 sina/N . - - .
|h—p| <20 arccoshy/ — ) (200 in which the one-bunch solution eventually appears. First,
e 7N until t=300, the initial uniform flow developed into a three-
bunch configuration which closely resembles the exact three-
Outside this range, we find two different valuescpfor n,  bunch solution. Although this configuration maintained its
=1 or 2. In this case, the solution corresponding to uniformshape for some time, it gradually became distorted, with one
flow is linearly stable. However, we cannot say for certainof the bunches moving closer to a neighboring buncht At
whether multibunch solutions are stable. We will discuss this=4680, the fusion of these bunches occurred, and system
point in another work12]. On the other hand, it is likely that transformed into a two-bunch configuration. The two-bunch
unstable uniform flow will develop into one of the analytic configuration existed about ten times longer than the three-
solutions within the rangd€20). However, the process in bunch one. However, eventually, one of the bunches began
which a multibunch solution is generated from a given initialto shrink. This bunch was finally absorbed by the othetr at
configuration is very complicated. For this reason, it is diffi- =51 560, as shown in Fig. 5, and the formation of the one-
cult to predict which of the possible analytic solutions will bunch solution was completed. The simulation was contin-
be selected. ued untilt=2x 10°, with the one-bunch solution continuing
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T T A A APPENDIX A: DEFINITIONS AND FORMULAS
- O OF ELLIPTIC FUNCTIONS
P O S
e 9 N S T The definitions of elliptic functions and some mathemati-
1.8 R | cal formulas used in this paper are listed in this Appendix.
1.6k G : \’ L/ Dot The elliptic theta functions are defined as the infinite
AR A H L R B A products
YR VRV U Uy )
1.2 L . : : : . . : t
51500 51600 Yo, ) =0qo I ] (1-29>""1cos2mv+qg*"?),
n=1
FIG. 5. The fusion process &&=51560. One bunch begins to (A1)
shrink att=48 000 and is absorbed by the other. *

91(v,q) =27y sinmo [[ (1-29%" cos 2mv +q*"),
to survive, unchanged in form. These results suggest that the n=1

one-bunch solution is an attractor of the syster8]. where qo=T1%_,(1—g2"). The addition formulas for the

V. SUMMARY AND DISCUSSION theta functions are

We found a finite set of exact multibunch solutions for a Fo(v+W)Jo(v =) I5(0) = ¥5(v) (W) — 95 (v)vi(W),
car-following model consisting of a differential-difference 5 ) 5 ) ) A2
equation with a cyclic boundary condition characterized by a ¥1(v +W) &1 (v —w) 95(0) = 91(v) I5(w) — Fo(v) F3(W).
driver’s reaction time. We found that when the circuit length
and the total number of cars are given, we can calculate thl
possible number of car bunches in the circuit and the profil
of the density wave that describes the car bunching. Ou

he Jacobi elliptic functions, the modullisand the comple-
entary moduluk’ can be expressed in terms of the theta
nctions as follows:

numerical simulations show that linearly unstable uniform 92(0.) 92(0.0) o

flow gradually develops into a one-bunch solution, which k= 3— = g_’, K=~ 9%(04),
seems to be an attractor of the system. In the relaxation pro- 93(0,9) 95(0,0) 2

cess from uniform flow to the one-bunch solution, the system

remains for extended times in configurations that closely ap- 1 94(v)

proximate higher multibunch solutions. We found that the sn Xv= K Fol0)” cn Ko =1-sP2Kv, (A3)
durations of these quasistable configurations increase expo-

nentially as the number of bunches decredseg Fig. 1 in N
Ref.[13]). dn 2Ky =1—k?sr? 2Kv,

_ The series of transitions from one multibunch configura~yherek is the complete elliptic integral of the first kind.
tion to the next suggests that each multibunch solution cor-
responds to a heteroclinic point of the system. However, no
flow out of the one-bunch solution was observed, which sug-
gests that it is an attractor. It is also possible that each of the [et us solve the equation of motion
multibunch solutions is a kind of Milnor attractdri4],

APPENDIX B: THETA FUNCTION FORMALISM

which is unstable with respect to any small perturbation, but . AXp(t)—p
globally attracts orbits. To fully understand the situation we Xa(tH7)=¢&+ ”tam‘(T)' (B1)
must investigate the stability and attracting domain of the
multibunch solutions more precisely. with the assumed form
The formation of density waves from uniform flow in the
OV model is very similar to that in the present model. Car %.(t)= Ct—nh+Aln Yo(v—B+6) (B2)

bunching and the fusion of bunches have also been observed

in the OV model. It is reasonable to believe that the exis-
tence of multibunch solutions and the qualitative features ofvhere
the cascade of transitions are common to both models, al-
though at this time we cannot be sure, as analytic solutions v=rt—2pn. (B3
for the OV model have not yet been obtained.

Bo(v—B—9)’

By virtue of the Whitham conditionvr= B, the velocity at
ACKNOWLEDGMENTS t+ 7 can be written as
The author express great appreciation to Y. lgarashi and d do(v+9) B4

K. Itoh for many useful discussions and for encouraging this Xolt+7)= C+AV@ In Yo(v—126)"’
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where we have replaced the time differentiatidtdt with ~ We can transfornN.. here into expressions involving differ-
vd/dv. Then, converting the differentiation intod/d8, we  entiation with respect t@ rather thans:
can apply the addition formulgA2) to the expression

d d
d S+ d N+=(iﬁ—@)[ﬁiwrﬁ)ﬁ%w)—ﬁé(ar/aw%(a)]
—INno——5=<In[Fg(v+ ) Vp(v— )]
dv 9g(v—6) dé d  9,(25%R)

B op
(B12)

d =+ 93(0)94(B) 91(26% )
= 55N 98(0) 03(8) — 95(0) 93(9)].

(B5) As mentioned above, EqB10) can be written by using the

This allows us to write the velocity in a rational expressionhyperbolic tangent function as
of 93(v) and 92(v):

_ _Ar(NC N+) AV(N N+)
e DROLOYO)  OH) 5D W(HD=C* 55 b,/ 2 b
Xl ) o A Y 92(5)— 9%(0) 92(0) . b
(B6) X tan)'( Xn+ > In D_) . (B13)
+

We find that the headwa
! way Thus, we find the equations to which the parameters are

VYo(v+ B+ 8)Ig(v—B—9) subject by comparing the above equation with the equation
S0+ B—0)Do(v—B+0) (B7)  of motion (B1). We obtain

Av d 9,26+ )

Ax,(t)=h+Aln

can also be expressed in a rational form (v) and - R P R

FI with(v E=C+ 5 5 255 (B14)

93(0) 03(8+ B)— 93(v) 9% 6+ B) _Avd 91(B)
N R e B B O "7 " vzer poaze-py O

Here B 91(26-B)
p—h—AIn—ﬁl(25+ﬂ), (B16)

X _Axn(t)—h BS

ST oA (B9) o=A. (B17)

By eliminating 92(v) and 9%(v) from Egs.(B6) and(B8),it N the first two equations, we can decompose the variables
can be shown that the velocity,(t+ 7) is equal to a first and B in the theta functions using the addition formulas. We

order rational expression ef*n, which can be rewritten as a ©Ptain the following:

hyperbolic tangent function of the headway,(t). Per- 92(28) 92
forming this elimination, we obtain a differential-difference ¢=C+ A_V im 9o(26)+ & i n( ;( )_ ;(’8)),
equation that the forniB2) satisfies: 2 dé 4 dé | 95(20) 95(B)

(B19)
_ N, +N_e?*n ) )
Xp(t+ T):C+Avm, (B10) Av d (ﬁo(ﬁ) 190(25)) (B19
+TD- =———In - .
T2 dp 0k 93(20)
where
For the first of thesed/dg is converted intal/dé, to apply
D+=ﬁ§(0)1‘}1(ﬂ)1‘}1(25i B), the addition formulas, before the decomposition. It can be

shown that the relation®14)—(B17) are equivalent to those
N. = +{02(5+ B)[93(6)] — 93(6= B[ 93(5)]'}. that we found previously9], although they are quite differ-

(B11) ent in appearance.
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